
An approximate abstraction approach to safety control of differentially
flat systems

Alessandro Colombo and Antoine Girard

Abstract— Control for safety specifications of large nonlinear
systems is a challenging task. By reducing the system to a
discrete abstraction the computational demands of the con-
troller can be greatly reduced. We propose a supervisor for
differentially flat systems, based on an approximate abstraction
of the flat output. By defining the abstraction on the flat output
space, we simplify the design of the abstraction and further
reduce the computational complexity of the resulting supervisor,
and by exploiting approximate simulation techniques we obtain
a controller that is simpler and more flexible than previously
proposed solutions. The resulting algorithm is tested on an
eight-dimensional nonlinear planar crane model.

I. INTRODUCTION

The design of complex and safety-critical engineering sys-
tems demands provably safe control algorithms, guaranteed
to keep the system’s state outside of an unsafe set under all
operating conditions. Supervisory control represents an inter-
esting solution to this problem, particularly in the context of
multi-objective optimal control, where a supervisor enforcing
safety can act as a layer of a more complex controller,
or when the controller must interface with human-provided
control decisions, disallowing unsafe ones. A supervisor de-
signed for this purpose must be computationally efficient, to
cope with the system complexity, and must be as permissive
as possible, to avoid imposing unnecessary restrictions on
the set of allowed control decisions. A common approach
to the design of such algorithms is based on reducing the
continuous system to an abstraction. This is a simplified
representation of the system’s dynamics that preserves some
significant properties, such as reachability or set invariance.
By mapping a system’s dynamics onto a simpler one, typi-
cally lower dimensional, discrete, or finite dimensional, the
problem of verifying or controlling the system is simplified.
The process of abstraction usually relies on some particular
properties of the abstracted system, which is required to have
linear or affine dynamics [1], [2], to be monotone [3], incre-
mentally stable [4], [5], [6], or to have a weakly integrable
vector field [7], though more general approaches have been
proposed [8]. Frequently, the process of abstraction is based
on the concept of bisimulation [9], which is an equivalence
relation between the dynamics structure of two systems.

In this paper, we design a supervisory control based on a
discrete abstraction, that can be applied to differentially flat

This work was supported by the Agence Nationale de la Recherche
(VEDECY project - ANR 2009 SEGI 015 01) and the Université Joseph
Fourier (SYMBAD project).

A. Colombo is with DEIB, Politecnico di Milano, via Ponzio 34/5, 20133
Milano, Italy. alessandro.colombo@polimi.it

A. Girard is with Laboratory Jean Kuntzmann, University of Grenoble,
B.P. 53, 38041 Grenoble, France Antoine.Girard@imag.fr

systems. These are linear or nonlinear systems whose state
and input can be written as a function of an output (called the
flat output) and a finite number of its derivatives. Expressing
the flat output and its derivatives as the state of a chain of
integrators, trajectories of a flat system correspond to trajec-
tories of the chain of integrators. What is more important,
designing inputs for a differentially flat system to drive its
flat output along a given trajectory is trivial, as the problem
is reduced to evaluating an algebraic map of the trajectory
of the chain of integrators. In [10], [11], we proposed a
supervisory control algorithm based on the abstraction of
differentially flat systems. Here, we extend the results above
by exploiting the property, observed in [12], that any n-th
order integrator can be rendered approximately bisimilar to
a first order integrator by the use of a suitable feedback map
(see e.g. [13] for a definition of approximate bisimilarity).
Based on this observation, we define a first order approximate
bisimulation of a generic differentially flat system. Then, we
derive a finite abstraction of the first order approximation.
The abstraction is, by construction, approximately bisimilar
to the original system with feedback control. By bounding
the approximation error introduced by the bisimulation, we
design a supervisory control algorithm for the original system
based on its discrete abstraction. The supervisor is proved
correct (safety-enforcing and nonblocking) and can be made
arbitrarily permissive by refining the abstraction.

The approach proposed here has several advantages over
that initially proposed in [10], [11]. The new approach allows
inputs that change continuously within some bounded set,
rather than requiring a discrete set of inputs. Thus, this
supervisor can be easily overlaid to other control algorithms
as the safety-enforcing layer in a multi-objective control
scheme [14], or it can be implemented as a safety-enforcing
filter to the allowed inputs, without requiring to redesign
the input set. Moreover, the additional degrees of freedom
provided by the design of the approximate bisimulation allow
to tune the set of allowed inputs to meet physical constraints,
for example by reducing the required control efforts. The pro-
posed algorithm is tested on an eight-dimensional nonlinear
model of a planar crane.

The paper is organised as follows. In the next section,
we formally introduce the class of systems addressed by
our algorithm. Then, in Section III, we follow the approach
presented in [12] to approximate the dynamics of (1) with
that of a first order integrator. In Section IV, we design a
finite abstraction of the first order integrator. In Section V,
we use the abstraction to define a supervisor for (1) that
solves the two problems above. Finally, in Sections VI we

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 4226

discuss an example application of the proposed algorithm.

II. PROBLEM STATEMENT

Consider the system

ẋ = f(x, a), y = h(x), (1)

with x(t) ∈ X ⊆ Rm, a(t) ∈ A ⊆ Rn, y(t) ∈ Y ⊆ Rn.
Functions f and h are Ck for sufficiently large k. Call A
the space of input signals a, and let x be the state of the
system and y be the output. We denote x, y, and a the state,
output, and input signals of (1), that is, maps R+ → Rm,
R+ → Rn, and R+ → Rn respectively. The symbols x(t),
y(t), and a(t) denote the same quantities evaluated at time
t. When referring to a specific element of the spaces X , Y
or A, we overline the corresponding symbol, as in ȳ ∈ Y .
When the input corresponding to a given output or state
must be specified, we write y(t, a) or x(t, a), and when
the initial conditions x(0) need to be explicitly specified,
we use the notation y(t, a, x(0)) or x(t, a, x(0)). Finally,
y([t1, t2]) :=

⋃
t∈[t1,t2] y(t). This notation extends trivially

to the other formalisms introduced for state, output, and
input. We assume that (1) is differentially flat [15], [16], [17],
with y as the flat output. This means that function h has rank
n (i.e, it’s Jacobian has rank n uniformly), and there exist
two functions Γ : (Rn)q+1 7→ Rm and Θ : (Rn)q+2 7→ Rn
of rank m and n, respectively in their domains, such that the
integral curves of (1) identically satisfy the equations

x = Γ(y, ẏ, ..., y(q)), a = Θ(y, ẏ, ..., y(q+1)). (2)

We also require that n(q+ 1) = m, which together with the
rank condition implies that the function Γ is invertible.

We consider the set B ⊂ Y , called the bad set. Our
objective is to design a supervisor [18], [9] for system (1)
that prevents output trajectories from entering the bad set,
as long as the trajectories are within a compact subset Ŷ of
Y . This requirement can be formally expressed using the
concept of ε-safe trajectory:

Definition 2.1: An output trajectory y([0, T]) ⊂ Ŷ is ε-
safe provided inft∈[0,T] infb∈B ‖y(t)− b‖∞ > ε.
Given a grid of hypercubic cells of side η defined on Y , let
Ŷ be a compact subset of Y composed by a finite number of
such cells. We shall design a supervisor σ : X → 2A for (1)
that enforces 0-safety within Ŷ . The supervisor will be based
on an approximately bisimilar abstraction of (1), and will
depend on space and time discretization parameters η and τ .
More precisely, we aim to solve the following problem.

Problem 2.1 (Correctness): Define a supervisor that at-
taches to each x(kτ) a set of inputs a defined in the interval
[kτ, (k + 1)τ], with the following properties:

(P.1) If a ∈ σ(x(kτ)) and y(kτ) ∈ Ŷ , then y([kτ, (k +
1)τ], a) is 0-safe

(P.2) If σ(x(kτ)) 6= ∅, a ∈ σ(x(kτ)), and y((k+1)τ, a) ∈ Ŷ ,
then σ(x((k + 1)τ, a)) 6= ∅ (non-blockingness)

A supervisor solution of the above problem is correct by
design, that is, allowed inputs are guaranteed to exist for all
positive time and the corresponding solutions are guaranteed
to lay outside of the bad set. One may additionally wish to

design the supervisor such that the set of allowed inputs is
as large as possible. This can be achieved asymptotically,
by refining the abstraction on which the supervisor is based.
This property is captured by the following problem.

Problem 2.2 (Optimality): Define a supervisor solution of
Problem 2.1 with the following additional property:

(P.3) For any δ-safe trajectory y∗([0, T]) = h(x∗([0, T])) ⊂
Ŷ , there exists a d > 0 and a supervisor based on a grid
of cells of side η < d, such that setting x(0) = x∗(0),
some input a ∈ A verifies a ∈ σ(x(bt/τcτ, a)) for all
t ∈ [0, T ′] and such that the infinity-norm Hausdorff
distance1 H(y([0, T ′], a), y∗([0, T])) ≤ δ.

We solve the above problems by designing a suitable feed-
back control for system (1), such that the controlled system
is approximately bisimilar to a first order integrator. Then
we design a supervisor for a discrete abstraction of the first
order integrator.

III. HERARCHICAL CONTROL USING SIMULATION
FUNCTIONS

We know that the output trajectories of the flat system (1)
coincide with the trajectories of the linear system: y(q+1) = u
that we should rewrite under the form{

θ̇ = Aθ +Bu,
y = Cθ

(3)

where

θ =

y
ẏ
...

y(q)

 , A =

0n In 0n . . . 0n
...

. . .
. . .

. . .
...

...
. . .

. . . 0n
0n 0n In
0n 0n

 ,
BT = [0n . . . 0n In] , C = [In 0n . . . 0n] ,

where In denotes the n× n identity matrix, 0n denotes the
n × n zero matrix. Notice that, by the invertibility of Γ in
(2), θ = Γ−1(x). We want to approximate (3) by the first
order integrator

ż = v, (4)

with z ∈ Z = Y ⊂ Rn and v ∈ V ⊂ Rn. We use for z and
θ the same notation introduced in Section II for x, y and a.

Definition 3.1: Let V : R(q+2)×n → R+ be a smooth
function and uV : R(q+2)×n → Rn be a continuous function.
V is a simulation function of (4) by (3) and uV is an
associated interface if there exists a K function2 γ such that
for all (z, θ) ∈ R(q+2)×n,

V(z, θ) ≥ ‖z − Cθ‖2 (5)

and for all v ∈ Rn, satisfying γ(‖v‖2) < V(z, θ),

∂V(z, θ)

∂z
· v +

∂V(z, θ)

∂θ
· (Aθ +BuV(v, z, θ)) < 0 (6)

1The infinity-norm Hausdorff distanceH(X,Y) between two sets X and
Y is max{supx∈X inf y ∈ Y ‖x−y‖∞, supy∈Y inf x ∈ X‖x−y‖∞, }

2A function γ : R+ → R+ is a K function if it is continuous, strictly
increasing and satisfies γ(0) = 0.

4227

A simulation function allows us to bound the distance
between output trajectories of (4) and (3).

Theorem 3.1 (proved in [12]): Let V be a simulation
function of (4) by (3) and uV an associated interface. Let
v : R+ → V ⊂ Rn be an input of (4), let z and y be the
trajectories of (4) and (3) given by

ż = v,

θ̇ = Aθ +BuV(v, z, θ),
y = Cθ

(7)

Then, for all t ∈ R+, ‖z(t) − y(t)‖2 ≤
max

{
V(z(0), θ(0)), sups∈[0,t] γ(‖v(s)‖2)

}
, and

V(z(t), θ(t)) ≤ max
{
V(z(0), θ(0)), sups∈[0,t] γ(‖v(s)‖2)

}
.

We use the method proposed in [12] to compute a sim-
ulation function of (4) by (3) and an associated interface.
Let us assume K is a stabilizing gain for (3) (i.e. A+BK
is Hurwitz), K can be obtained easily for instance by pole
placement or LQ synthesis. Let λ > 0 and M a positive
definite symmetric matrix such that

M ≥ CTC, (8)

(A+BK)TM +M(A+BK) ≤ −2λM. (9)

Proposition 3.1 ([12]): The function defined by
V(z, θ) =

√
(CT z − θ)TM(CT z − θ) is a simulation

function of (4) by (3) and an associated interface is given
by

uV(v, z, θ) = Rv +K(θ − CT z) (10)

where R is an arbitrary n×n matrix. The function γ is then
given by

γ(ν) =

∥∥∥√M(BR− CT)
∥∥∥

2

λ
ν (11)

and is minimal for R = (BTMB)−1BTMCT .
The entries of the matrices M and K can be tuned to meet
further dynamic constraints. Given the bound ε ≥ ‖z − y‖2,
‖(z−y)(i)‖2 ≤ αiε provided that M ≥ CTi Ci/α2

i , where Ci
is the i-th versor, while the ‖u‖2 ≤ αkε by imposing M ≥
KTK/α2

k. With the above construction, the flat system (3)
controlled by the feedback map uV as in (7) is approximately
bisimilar to (4).

IV. APPROXIMATELY BISIMILAR FINITE ABSTRACTION

Using the approach of Section III, we can approximate the
dynamics of system (1) with that of the first order integrator
(4). We now design a discrete abstraction of (4), that is, a
discrete event system that is (exactly) bisimilar to (4), and is
therefore approximately bisimilar to (3) (and hence to (1)),
once the latter is controlled through the feedback map uV .
By discretizing the dynamics of (4), we can turn the control
problem into the problem of controlling a finite discrete event
system.

Consider a regular lattice Q of step η over Z, such that an
element of the lattice lies in the centre of each hypercubic
cell composing Z. Let q denote an element of Q. Since both

q ∈ Q and z ∈ Z are elements of Rn, the infinity norm
defines a distance for any pair (q, z). The lexicographical
order is a total order on the elements of Q, so that any
subset of Q has a unique minimum. Let `(z̄) := minq∈Q{q :
‖z̄ − q‖∞ ≤ η/2}. Define the discrete event system

G := (Q,Vd, ψ) (12)

with states q ∈ Q, events vd ∈ Vd, and transition function
ψ(q, vd). To define Vd and ψ(q, vd), we proceed as follows.
Given a signal v constant and equal to v̄ over an interval
of length τ , we denote vd

z̄⇔ v̄ if `(z̄ + v̄τ) = `(z̄) + vdτ .
We define Vd ⊂ Rn as the set {vd ∈ Rn : ∃z̄ ∈ Z, v̄ ∈
V such that vd

z̄⇔ v̄}, The transition function is then defined
as follows: ψ(q, vd) := q′ if ∃ z̄ ∈ Z, v̄ ∈ V such that
q = `(z̄), q′ = `(z̄ + v̄τ), and vd

z̄⇔ v̄. The map `
relates each z ∈ Z to a state of G and vice versa, and
the definition of ψ ensures that for each trajectory of (4)
of duration τ there exists a corresponding transition of G,
and vice versa. Thus, the discrete event system G and the
time-τ discretization of (4) are bisimilar (see [9] for a
formal definition of bisimilarity), and consequently G and
the time-τ discretization of (1) are approximately bisimilar.
The symbol s is used to denote a generic string v1

dv
2
d . . .,

finite or infinite. Also, given a state q ∈ Q, we denote by
(q, vd) a transition of (12) from state q with event vd, and
by (q, s) an execution of (12) starting from initial state q,
with events string s = v1

dv
2
d We use the notation ψ(q, s)

to denote the last state reached by the finite execution (q, s).
In general, the cardinality of the state set Q is infinite.

However, we only need the abstraction to control the system
(1) within the output subset Ŷ . Thus, we define the restricted
abstraction Ĝ := (Q̂, Vd, ψ), obtained by restricting the state
set to the subset Q̂ of Q of all states q such that `(z̄) = q
for some z̄ ∈ Ŷ . Thus, Ĝ is a finite approximate abstraction
of (1), with output restricted to Ŷ .

V. SYNTHESIS OF THE SUPERVISOR

By reducing (1) to a finite abstraction, we can solve
Problems 2.1 and 2.2 by selecting a suitable set T of
executions of Ĝ. Let P := (CMCT)−1CM , and call
uτ (v̄, θ̄) the signal uV(v, z, θ) obtained by solving (7) in
the interval [0, τ] with initial conditions z(0) = P θ̄ and
θ(0) = θ̄, and with constant input v = v̄. Then, call
a(uτ (v̄, θ(kτ))) = a(uτ (v̄,Γ−1(x(kτ)))) the input corre-
sponding to uτ (v̄, θ(kτ))) through the map Θ in (2). Given
a set T , construct the supervisor σ(x(kτ)) for each time
interval [kτ, (k + 1)τ] as the union of all signals

a(uτ (v̄,Γ−1(x(kτ)))) (13)

with v̄ such that v̄
Pθ(kτ)⇔ vd for some vd ∈ Vd and s ∈

2Vd , q = `(Pθ(kτ)) and (q, vds) ∈ T . To ensure that the
supervisor meets the specifications of Problems 2.1 and 2.2,
we endow T with the following properties.

Definition 5.1: An execution (q, s) is forward-maximal if
ψ(q, v1

d . . . v
n
d) ∈ Q̂ for all n < m, and ψ(q, v1

d . . . v
m
d) /∈ Q̂,

or if ψ(q, v1
d . . . v

m
d ,) ∈ Q̂ for all m > 0.

4228

Definition 5.2: A set T of executions is ε-non-escaping
if (q, vds) ∈ T implies that, for all z̄ ∈ Z such that ‖z̄ −
ψ(q, vd)‖∞ ≤ ε+ η/2, (`(z̄), s′) ∈ T for some s′.

Definition 5.3: A transition (q, vd) such that ψ(q, vd) = q′

is ε-safe if inft∈[0,τ],b∈B ‖t(q′−q)/τ+q−b‖∞ ≥ ε+η/2. An
execution (q, s) is ε-safe if all the transitions that compose
it are ε-safe.
We first prove that the supervisor σ based on a set T of
executions with the above properties solves Problem 2.1. For
simplicity, we split the proof in four lemmas.

Lemma 5.1: Take ε ≥
max{V(z(kτ), θ(kτ)), supv̄∈V γ(‖v̄‖2)}. If a =
a(uτ (v̄, θ(kτ))) for some v̄ ∈ V in the time interval
[kτ, (k + 1)τ], then V (Pθ((k + 1)τ), θ((k + 1)τ)) ≤ ε.

Proof: From Theorem 3.1 V(z(t), θ(t)) ≤
max{V(z(0), θ(0)), sups∈[0,t] γ(‖v(s)‖2)} for all t ≥ 0.
Hence, if ε ≥ max{V(z(kτ), θ(kτ)), supv̄∈V γ(‖v̄‖2)},
then V(z((k + 1)τ), θ((k + 1)τ)) ≤ ε. Moreover,
V(Pθ((k+1)τ), θ((k+1)τ)) ≤ V(z((k+1)τ), θ((k+1)τ)),
since V(z̄, θ̄) is minimized when z̄ = P θ̄.

Lemma 5.2: Take ε ≥
max{V(z(kτ), θ(kτ)), supv̄∈V γ(‖v̄‖2)}. If a =
a(uτ (v̄, θ(kτ))) for some v̄ ∈ V in the time interval
[kτ, (k + 1)τ], then ‖z((k + 1)τ)− Pθ((k + 1)τ)‖∞ ≤ 2ε.

Proof: By Lemma 5.1,
V (Pθ((k + 1)τ), θ((k + 1)τ)) ≤ ε, while by
the definition of V , ‖Pθ((k + 1)τ) − y((k +
1)τ)‖2 ≤ V (Pθ((k + 1)τ), θ((k + 1)τ)) . Therefore,
‖Pθ((k + 1)τ) − y((k + 1)τ, a)‖∞ ≤ ε. Also, by Theorem
3.1, ‖z((k + 1)τ) − y((k + 1)τ)‖∞ ≤ ε. Therefore,
‖z((k + 1)τ)− Pθ((k + 1)τ)‖∞ ≤ 2ε.

Lemma 5.3: Set z(0) = Pθ(0). If T is a
set of ε-safe executions for some ε > 0, and
max{V(z(0), θ(0)), supv̄∈V γ(‖v̄‖2)} ≤ ε, then σ has
property (P.1).

Proof: Given z(0) = Pθ(kτ), let q := `(z(0)).
Consider a = a(uτ (v̄, θ(0))) ∈ σ(x(0)) in the time

interval [0, τ], and let vd
z(0)⇔ v̄. By assumption,

if (q, vds) ∈ T for some s, then (q, vd) is ε-
safe. By Theorem 3.1, ‖z(0) + tv̄ − y(t, a)‖2 ≤
max{V(z(0), θ(0)), supv̄∈V γ(‖v̄‖2)}. This in turn implies
that ‖z(0) + tv̄ − y(t, a)‖2 ≤ ε and hence ‖z(0) + tv̄ −
y(t, a)‖∞ ≤ ε for all t ∈ [0, τ]. Let q′ = ψ(q, vd).
Then, inft∈[0,τ] ‖t(q′ − q)/τ + q − (z(0) + tv̄)‖∞ ≤ η/2,
therefore ‖t(q′ − q)/τ + q − y(t, a)‖∞ ≤ ε + η/2, which
implies that y(t, a) is 0-safe in the time interval [0, τ]. By
Lemma 5.1, since max{V(z(0), θ(0)), supv̄∈V γ(‖v̄‖2)} ≤
ε, setting z(τ) = Pθ(τ), we have that
max{V(y(τ), θ(τ)), supv̄∈V γ(‖v̄‖2)} ≤ ε. Thus, we can
repeat the reasoning above for each interval [kτ, (k + 1)τ],
completing the proof.

Lemma 5.4: Set z(0) = Pθ(0). If T is a set of forward-
maximal executions 2ε-non-escaping for some ε > 0, and
max{V(z(0), θ(0)), supv̄∈V γ(‖v̄‖2)} ≤ ε, then σ in (13)
has property (P.2).

Proof: Given x(0), assume that σ(x(0)) 6= ∅ and
consider a = a(uτ (v̄, θ(0))) ∈ σ(x(0)) in the time interval

[0, τ], for some v̄ ∈ V . Call q := `(z(0)) and q′ :=

`(Pθ(τ)), and let vd
z(0)⇔ v̄. By Lemma 5.2, ‖z(0) + τ v̄ −

Pθ(τ)‖∞ ≤ 2ε, hence ‖`(z(0) + τ v̄) − Pθ(τ)‖∞ ≤ 2ε +
η/2. Since T is 2ε-non-escaping and all its executions are
forward-maximal, (q′, s) ∈ T for some sequence of events
s, or q′ /∈ Q. In the first case, σ(x(τ, a)) 6= ∅, while in the
second case y(τ, a) /∈ Ŷ . Now, since V(z(τ), θ(τ)) ≤ ε and
hence max{V(z(τ), θ(τ)), supv̄∈V γ(‖v̄‖2)} ≤ ε, we can
repeat the reasoning above for each interval [kτ, (k + 1)τ],
completing the proof.

Theorem 5.5: Given z(0) = Pθ(0) and ε ≥
max {V(z(0), supv̄∈V γ(‖v̄‖2)} , if T is the largest 2ε-non-
escaping set of ε-safe and forward-maximal executions of
(12), then the supervisor (13) solves Problem 2.1.

Proof: The results follows from the above Lemmas.
The supervisor described above is also solution of Problem
2.2, as long as the derivatives of the output y are naught
at time 0, and the input set V for (4) can be selected as
a neighbourhood of the origin, as proved in the following
theorem.

Theorem 5.6: Let x(0) be such that all derivatives of y(0)
are naught, let the input set V of (4) be an open hypercube
of side 2d centred on the origin, set z(0) = Pθ(0), and take
ε = max{V(z(0), θ(0)), supv̄∈V γ(‖v̄‖2)}. If T is the largest
2ε-non-escaping set of forward-maximal ε-safe executions,
then the supervisor σ in (13) has property (P.3), and solves
Problem 2.2.

Proof: Given the constant d > 0, fix η < d and set

τ := 2
‖
√
M(BR− CT)‖2

√
n

λ
+

3η

2d
+ d (14)

so that, according to (11), τ = 2γ(
√
nd)/d + 3η/2d + d.

By assumption V is an open hypercube of side
2d centred on the origin, so that for all v̄ ∈ V ,
‖v̄‖2 ≤

√
nd. Since x(0) is such that all derivatives

of y(0) are naught, we have that V(z(0), θ(0)) = 0,
so that max{V(z(0), θ(0)), supv̄∈V γ(‖v̄‖2)} ≤
max{V(z(0), θ(0)), γ(

√
nd)} = γ(

√
nd), and ε ≤ γ(

√
nd).

Let Vr be an open hypercube of side 2(d − 2ε/τ − 3η/2τ)
centred on the origin. Given the value of τ assigned in (14)
the above quantity is always positive, so Vr ⊂ V .

Assume at first that the arclength of y∗([0, T]) is finite.
Since Vr is an open neighbourhood of the origin, we can
construct a piecewise linear interpolation z∗([0,mτ], v∗) of
y∗([0, T]) as a trajectory of (4) with input v∗, constant
and equal to v̄∗ ∈ Vr in intervals of length τ . The tra-
jectory z∗([0,mτ], v∗) is taken so that it lies on y∗([0, T])
at each t = kτ with k ∈ {1, . . . ,m}, and such that
z∗(0, v∗) = y∗(0) and z∗(mτ, v∗) = y∗(T) . Notice
that, in general, mτ 6= T . The infinity norm distance
between two subsequent interpolation points is bounded
by dτ , and since by (14) τ is bounded as d → 0, this
distance goes to 0 with d. Thus, the interpolation error
e(d) := H(y∗([0, T]), z∗([0,mτ], v∗)) converges to 0 as
d → 0. Additionally, both η and ε go to 0 with d, and
for each d the execution

(
`(z∗(0)), v∗,1d . . . v∗,m−1

d

)
, with

4229

v∗,kd
z(kτ)⇔ v∗(kτ), is (δ − e(d))-safe. Thus, for d small

enough, the execution is ε-safe. We can extend the execu-
tion

(
`(z∗(0)), v∗,1d . . . v∗,m−1

d

)
by concatenating an infinite

string of events v∗,kd = 0, k ≥ m, making the execution
forward-maximal.

Now, consider an arbitrary step k, and consider the family
of transitions starting from states `(z̄), with z̄ ∈ Z such
that ‖z̄ − `(z∗(kτ, v∗))‖∞ ≤ 2ε + η/2. We have that
‖z∗(kτ, v∗)− z∗((k + 1)τ, v∗)‖∞ ≤ (dτ − 2ε− η), so that
‖`(z∗(kτ, v∗)) − z∗((k + 1)τ, v∗)‖∞ ≤ (dτ − 2ε − η/2),
and hence ‖z̄ − z∗((k + 1)τ, v∗)‖∞ ≤ dτ , so we can
always choose a signal v constant and equal to v̄(z̄) in
the interval [kτ, (k + 1)τ], such that z̄ + v̄(z̄)τ = z∗((k +
1)τ, v∗). For d sufficiently small all transitions (`(z̄), vd(z̄))

with vd(z̄)
z̄⇔ v̄(z̄) are ε-safe. Repeating this reasoning

for all k ≥ 0, we see that the set of executions E :=
{(`(z̄(kτ)), vkd(z̄(kτ))v∗,k+1

d v∗,k+2
d . . .)} for all z̄(kτ) such

that ‖z̄(kτ) − z(kτ), v∗‖∞ ≤ ε is a 2ε-non-escaping set
of ε-safe and forward maximal executions. Since T is the
largest 2ε-non-escaping set of ε-safe and forward maximal
executions, E ⊂ T . The above reasoning applies to the case
where y∗([0, T]) has infinite arclength, simply by taking an
infinitely long interpolating curve z∗([0,∞], v∗).

To conclude, observe that at t = 0 we have z(0) = y(0) =
z∗(0), since all derivatives of y(0) are naught. Hence, the
supervisor admits the input a = a (uτ (v∗(0), θ(0))) in the
interval [0, τ]. By Lemma 5.2, ‖Pθ(τ)− z∗(τ, v∗)‖∞ ≤ 2ε.
The above reasoning ensures that the supervisor admits
an input a = a (uτ (v̄(Pθ(τ)), θ(0))) such that Pθ(τ) +
v̄(Pθ(τ))τ = z∗(2τ). At t = kτ with k > 1, the
process is repeated applying a = a (uτ (v̄(Pθ(kτ)), θ(kτ)))
in each interval [kτ, (k + 1)τ]. We can now bound the
distance of the trajectory y(t, a) from the desired trajec-
tory y∗(t). From Lemma 5.2 we have that ‖Pθ(kτ) −
z∗(kτ, v∗)‖∞ ≤ 2ε, and from Theorem 3.1 we know
that ‖Pθ(kτ) + v̄(Pθ(kτ)) − y(t, a)‖∞ ≤ ε. Then we
defined e(d) := H(y∗([0, T]), z∗([0,mτ], v∗)). Therefore,
H(y([0,mτ], a), y∗([0, T])) ≤ e(d) + 3ε, hence for d suf-
ficiently small H(y([0,mτ], a), y∗([0, T])) ≤ δ.
From the above theorems it follows that the supervisor σ is
correct (Problem 2.1) irrespective of the input set V of (4),
but it requires V to be a neighbourhood of the origin to be
optimal in the limit (Problem 2.2). There are cases where V
must not include the origin, for example to force dynamics
towards a preferential direction (see, e.g., [10], [11]). In these
cases the approximate nature of the bisimilarity between
systems (4) and (3) imposes a lower bound on the guaranteed
distance between the possible trajectories of (1) and the
trajectories that are allowed by σ.

To construct the above defined set T , we need to extend the
discrete event system Ḡ with a set of uncontrollable events
taking each state q to all states q′ such that there exists y′ ∈
Ȳ with `(y′) = q′ and ‖y′ − q‖∞ ≤ 2ε + η/2. The set
T is found as the solution of the Basic Supervisory Control
Problem - Nonblocking Case (BSCP-NB), for which standard
algorithms are provided in the literature (see e.g., [9]).

m

Fig. 1. Schematic representation of the crane model. The crane is
supervised to avoid collisions between the mass and the obstacles (in red).

VI. APPLICATION

We have tested our algorithm by simulating its perfor-
mance on the planar cantilever crane described in [15],
assuming that the crane is supervised to avoid collisions
between the mass and a number of obstacles, as depicted
in Fig. 1. The laws of motion of the crane are described
implicitly by the following set of differential equations and
algebraic constraints:

mẍ1 = −T sinφ
mẍ2 = −T cosφ+mg
Mẍ3 = F − λẋ3 + T sinφ
J

ρ2 ẍ4 = C − µ

ρ
ẋ4 − Tρ

x1 = x4 sinφ+ x3

x2 = x4 cosφ.

Here, x1 and x2 are the coordinates of the mass, x3 is
the horizontal position of the trolley, x4 is the length of
the rope, T is the tension on the rope, φ is the angle of
the rope with respect to the vertical axis, F and C are
the control inputs, and correspond respectively to the force
applied to the trolley, and to the torque applied on the rope’s
pulley, and (g, J, λ,m,M, µ, ρ) are constant parameters. The
system is flat with flat output y := (y1, y2) = (x1, x2).
The corresponding “flattened” system is y(4) = u, with u ∈
U ⊂ R2. Note that an abstraction based on a straightforward
discretization of the full eight-dimensional state space would
be computationally intractable, while our flatness-based ap-
proximate abstraction only requires the discretization of a
two-dimensional set. We defined a supervisor with η =
0.1m, τ = 8s, and V a hypercube centred on 0 with side
0.1m/s. The simulation function and interface are defined
by the matrices

M :=
4.0316 5.5010 3.5679 0.5744
5.5010 10.1676 6.9904 1.2789
3.5679 6.9904 6.4655 1.3038
0.5744 1.2789 1.3038 0.4110

⊗ [1 0
0 1

]
,

where ⊗ is the Kronecker product, R :=
[

1.3977 0
0 1.3977

]
,

and
K :=

[−8.5690 −17.3220 −19.9542 −4.7978]⊗
[

1 0
0 1

]
,

which give γ(v) = 3.9930v. A sample trajectory of the
supervised crane is depicted in Fig. 2. The control inputs F

4230

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Fig. 2. Simulation of the supervised crane. The input is v(kτ) =
0.05[sin(55kτ), cos(55kτ)]T . The red rectangles are the obstacles, the
dashed black line is y(t) and the gray line is z(t).

and C needed to drive the crane’s mass along the trajectories
in the figure depend on the plant’s physical parameters.
However, the quantities D̈ and R̈, which are respectively the
acceleration of the trolley and of the rope, only depend on g,
and thus provide an easy way to compare the performance
of the above algorithm with alternative approaches. The
maximum values of D̈ and R̈ obtained using the approach
described above, when the input v is suddenly changed
from [0.05, 0.05] to −[0.05, 0.05], are max |R̈| = 0.04m/s2,
max |D̈| = 0.13m/s2. By comparison, the supervisor de-
scribed in [10], [11], which forces the mass to follow
polynomial trajectories interpolating the points q ∈ Q̂ of
a grid identical to the one defined in Section IV, gives
max |R̈| = 0.1m/s2, max |D̈| = 0.15m/s2 under identical
conditions. The milder input requirement is obtained at the
expense of a greater minimal distance between the allowed
trajectories and the obstacles.

VII. CONCLUSIONS

We have proposed an extension to the safety enforcing
supervisory control algorithm for differentially flat systems
originally discussed in [10], [11], obtained by exploiting
results found in [12]. We began by considering the flat
output dynamics, described by system (3). Following [12],
we defined a simulation function and an associated interface,
such that the trajectories of (3) with feedback control as
in (7) are approximated by the trajectories of a first order
integrator. The approximation error is bounded, the bound
depending on the design parameters of the interface. Then,
we defined a discrete abstraction of the first order integrator,
and a safety-enforcing supervisor based on the abstraction.
The resulting supervisor is correct, that is, it enforces safety
and it is nonblocking. Note that safety is enforced at all
times, and not just at the sampling times. Under additional
assumptions the supervisor is also proved to be optimal, that
is, to allow trajectories that follow any possible safe path, if
the discretization step is taken sufficiently small.

By working on a finite abstraction, rather than on the
continuous system, the computational complexity of the
algorithm is reduced. The algorithm complexity scales expo-
nentially with the dimension of the abstracted system’s space,

as in most discrete abstraction approaches [4], [5], [6], [8],
but since the abstraction is defined on the simple dynamics of
the first order integrator, its construction is not affected by the
complexity of the nonlinear dynamics of the original system,
and its size is proportional to the size of the output space
of the system, rather than the size of the full state space.
The main advantages with respect to the original algorithm
found in [10], [11] are in the properties of the input set
returned by the supervisor. Using approximate bisimulations,
we were able to define a supervisor that allows inputs that
change continuously within some bounded set, rather than
restricting inputs to a discrete set of polynomial inputs as
in the original algorithm. The new supervisor can thus be
overlaid seamlessly to a pre-existing system as a safety-
enforcing layer, without requiring to redesign the input set.
Moreover the additional degrees of freedom provided by the
design parameters of the interface allow for the tuning of the
resulting supervisor, trading control effort for restrictiveness.

REFERENCES

[1] R. Alur, T. Dang, and F. Ivancic, “Predicate abstraction for reachability
analysis of hybrid systems,” ACM Trans. on Embedded Computing
Systems, vol. 5, pp. 152–199, 2006.

[2] E. Dallal, A. Colombo, D. Del Vecchio, and S. Lafortune, “Supervisory
control for collision avoidance in vehicular networks using discrete
event abstractions,” American Control Conference, 2013.

[3] T. Moor and J. Raisch, Modelling, analysis, and design of hybrid
systems. Springer-Verlag, 2002, ch. Abstraction based supervisory
controller synthesis for high order monotone continuous systems, pp.
247–265.

[4] P. Tabuada, “An approximate simulation approach to symbolic con-
trol,” IEEE Trans. Autom. Control, vol. 53, pp. 1406–1418, 2008.

[5] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, pp. 2508–
2516, 2008.

[6] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar sym-
bolic models for incrementally stable switched systems,” IEEE Trans.
Autom. Control, vol. 55, pp. 116–126, 2010.

[7] M. Broucke, M. D. Di Benedetto, S. Di Gennaro, and A. Sangiovani-
Vincentelli, “Efficient solution of optimal control problems using
hybrid systems,” SIAM J. Contr. Opt., vol. 43, pp. 1923–1952, 2005.

[8] M. Zamani, G. Pola, M. Mazo Jr., and P. Tabuada, “Symbolic models
for nonlinear control systems without stability assumptions,” IEEE
Trans. Autom. Control, in press.

[9] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Springer-Verlag, 2008.

[10] A. Colombo and D. Del Vecchio, “Enforcing safety of cyberphysical
systems using flatness and abstraction,” in Proceedings of the Work-
in-Progress session of ICCPS 2011, 2011.

[11] ——, “Supervisory control of differentially flat systems based on
abstraction,” in 50th IEEE Conference on Decision and Control, 2011.

[12] A. Girard and G. J. Pappas, “Hierarchical control system design using
approximate simulation,” Automatica, vol. 45, pp. 566–571, 2009.

[13] ——, “Approximate bisimulation relations for constrained linear sys-
tems,” Automatica, vol. 43, pp. 1307–1317, 2007.

[14] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” Automatica, vol. 35, pp. 349–370,
1999.

[15] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: Introductory theory and examples,” Int. J. Control,
vol. 6, pp. 1327–1361, 1995.

[16] M. van Nieuwstadt, M. Rathinam, and R. M. Murray, “Differential
flatness and absolute equivalence of nonlinear control systems,” SIAM
J. Contr. Opt., vol. 36, pp. 1225–1239, 1998.

[17] J. Lévine, Analysis and control of nonlinear systems: A flatness-based
approach. Springer, 2009.

[18] P. J. Ramdage and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Contr. Opt., vol. 25, pp. 206–230,
1987.

4231

